Tutorial Note for Math2012E

May 23, 2016

1 Cylinders and Quadratic surfaces

1.1 Cylinders

- Generated by moving a plane curve along a straight line.
- The curve is called generating curve for the cylinder.
- Equation for cylinder Let $F(\vec{x}) = 0$ be the plane curve, \vec{v} be the direction vetor of the straight line, then we have the equation of cylinder

$$F(\vec{x} - t\vec{v}) = 0$$

1.2 Quadratic surface

• General equation

General: $Ax^2 + B^y + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0$ with A, B, \dots, J fixed constants.

Use matrix : $X^TAX + X^TB + C = 0$ with A symmetric matrix, B vector, C constant

- Transform the equation into simple one
 - Use orthogonal change of coordinate to eliminate the cross-terms
 - Use translation to eliminate the first order term
- Classification of basic quadartic surfaces cf. Tutorial class
- Additional problem: In the discusion of classification of quadratic surfaces, in case D=0, why I don't talk about the case of $\lambda_1>0, \lambda_2, \lambda_3<0$? (There will be extra points for additional problems in the final mark.)

2 PROBLEMS 2

2 Problems

- cf. Chapter 12: Additional and Advanced Exercises 17-25
 - Dot product is positive definite i.e. $\vec{u}\cdot\vec{y}\geq0,\forall\vec{u}$
 - triangle inequality

$$|\vec{u} + \vec{v}| \leq |\vec{u}| + |\vec{v}|$$

• In general, this extends to Hilbert space and defines a metric